

3-4 Study Guide and Intervention

Systems of Equations in Three Variables

Systems in Three Variables Use the methods used for solving systems of linear equations in two variables to solve systems of equations in three variables. A system of three equations in three variables can have a unique solution, infinitely many solutions, or no solution. A solution is an ordered triple.

Example

Solve the system of equations.

$$3x + y - z = -6$$

$$2x - y + 2z = 8$$

$$4x + y - 3z = -21$$

Step 1 Use elimination to make a system of two equations in two variables.

$$3x + y - z = -6 \quad \text{First equation}$$

$$2x - y + 2z = 8 \quad \text{Second equation}$$

$$4x + y - 3z = -21 \quad \text{Third equation}$$

Add to eliminate y.

$$5x + z = 2$$

Step 2 Solve the system of two equations.

$$5x + z = 2$$

$$6x - z = -13$$

Add to eliminate z.

$$11x = -11$$

Divide both sides by 11.

$$x = -1$$

Substitute -1 for x in one of the equations with two variables and solve for z.

$$5x + z = 2$$

$$5(-1) + z = 2$$

Replace x with -1.

$$-5 + z = 2$$

Multiply.

$$z = 7$$

Add 5 to both sides.

The result so far is $x = -1$ and $z = 7$.

Step 3 Substitute -1 for x and 7 for z in one of the original equations with three variables.

$$3x + y - z = -6$$

Original equation with three variables

$$3(-1) + y - 7 = -6$$

Replace x with -1 and z with 7.

$$-3 + y - 7 = -6$$

Multiply.

$$y = 4$$

Simplify.

The solution is $(-1, 4, 7)$.

Exercises

Solve each system of equations.

1. $2x + 3y - z = 0$

 $x - 2y - 4z = 14$

 $3x + y - 8z = 17$

 $(4, -3, -1)$

2. $2x - y + 4z = 11$

 $x + 2y - 6z = -11$

 $3x - 2y - 10z = 11$

 $(2, -5, \frac{1}{2})$

3. $x - 2y + z = 8$

 $2x + y - z = 0$

 $3x - 6y + 3z = 24$

 infinitely many solutions

4. $3x - y - z = 5$

 $3x + 2y - z = 11$

 $6x - 3y + 2z = -12$

 $\left(\frac{2}{3}, 2, -5\right)$

 no solution

5. $2x - 4y - z = 10$

 $4x - 8y - 2z = 16$

 $3x + y + z = 12$

 infinitely many solutions

6. $x - 6y + 4z = 2$

 $2x + 4y - 8z = 16$

 $x - 2y = 5$

 infinitely many solutions
3-4 Study Guide and Intervention (continued)

Systems of Equations in Three Variables

Real-World Problems

Example The Laredo Sports Shop sold 10 balls, 3 bats, and 2 bases for $99 on Monday. On Tuesday they sold 4 balls, 8 bats, and 2 bases for $78. On Wednesday they sold 2 balls, 3 bats, and 1 base for $33.60. What are the prices of 1 ball, 1 bat, and 1 base?

First define the variables.

\(x = \) price of 1 ball
\(y = \) price of 1 bat
\(z = \) price of 1 base

Translate the information in the problem into three equations.

\[10x + 3y + 2z = 99\]
\[4x + 8y + 2z = 78\]
\[2x + 3y + z = 33.60\]

Subtract the second equation from the first equation to eliminate \(z \).

\[
\begin{align*}
10x + 3y + 2z &= 99 \\
(-) 4x + 8y + 2z &= 78 \\
6x - 5y &= 21
\end{align*}
\]

Multiply the third equation by 2 and subtract from the second equation.

\[
\begin{align*}
4x + 8y + 2z &= 78 \\
(-) 4x + 6y + 2z &= 67.20 \\
2y &= 10.80 \\
y &= 5.40
\end{align*}
\]

Substitute 5.40 for \(y \) in the equation

\[6x - 5y = 21\]

\[6x - 5(5.40) = 21\]

\[6x = 48\]

\[x = 8\]

Substitute 8 for \(x \) and 5.40 for \(y \) in one of the original equations to solve for \(z \).

\[
\begin{align*}
10x + 3y + 2z &= 99 \\
10(8) + 3(5.40) + 2z &= 99 \\
80 + 16.20 + 2z &= 99 \\
2z &= 2.80 \\
z &= 1.40
\end{align*}
\]

So a ball costs $8, a bat $5.40, and a base $1.40.

Exercises

1. FITNESS TRAINING Carly is training for a triathlon. In her training routine each week, she runs 7 times as far as she swims, and she bikes 3 times as far as she runs. One week she trained a total of 232 miles. How far did she run that week? **56 miles**

2. ENTERTAINMENT At the arcade, Ryan, Sara, and Tim played video racing games, pinball, and air hockey. Ryan spent $6 for 6 racing games, 2 pinball games, and 1 game of air hockey. Sara spent $12 for 3 racing games, 4 pinball games, and 5 games of air hockey. Tim spent $12.25 for 2 racing games, 7 pinball games, and 4 games of air hockey. How much did each of the games cost? **racing game: $0.50; pinball: $0.75; air hockey: $1.50**

3. FOOD A natural food store makes its own brand of trail mix out of dried apples, raisins, and peanuts. One pound of the mixture costs $3.18. It contains twice as much peanuts by weight as apples. One pound of dried apples costs $4.48, a pound of raisins $2.40, and a pound of peanuts $3.44. How many ounces of each ingredient are contained in 1 pound of the trail mix? **3 oz of apples, 7 oz of raisins, 6 oz of peanuts**